process: Development, validation and implementation,” Talanta, vol. 120,

pp. 114–125, Mar. 2014, doi: 10.1016/j.talanta.2013.11.072

[36] S. M. Mercier, P. M. Rouel, P. Lebrun, B. Diepenbroek, R. H. Wijffels, and M.

Streefland, “Process analytical technology tools for perfusion cell culture,” Eng. Life

Sci., vol. 16, no. 1, pp. 25–35, 2016, doi: 10.1002/elsc.201500035

[37] H. Mehdizadeh, D. Lauri, K. M. Karry, M. Moshgbar, R. Procopio-Melino, and D.

Drapeau, “Generic Raman-based calibration models enabling real-time monitoring

of cell culture bioreactors,” Biotechnol. Prog., vol. 31, no. 4, pp. 1004–1013, 2015,

doi: 10.1002/btpr.2079

[38] S. Craven, J. Whelan, and B. Glennon, “Glucose concentration control of a fed-batch

mammalian cell bioprocess using a nonlinear model predictive controller,” J. Process

Control, vol. 24, no. 4, pp. 344–357, 2014, doi: 10.1016/j.jprocont.2014.02.007

[39] B. Berry, J. Moretto, T. Matthews, J. Smelko, and K. Wiltberger, “Cross-scale

predictive modeling of CHO cell culture growth and metabolites using Raman

spectroscopy and multivariate analysis,” Biotechnol. Prog., vol. 31, no. 2,

pp. 566–577, 2015, doi: 10.1002/btpr.2035

[40] R. M. Santos, P. Kaiser, J. C. Menezes, and A. Peinado, “Talanta Improving reliability

of Raman spectroscopy for mAb production by upstream processes during bioprocess

development stages,” Talanta, vol. 199, no. November 2018, pp. 396–406, 2019, doi:

10.1016/j.talanta.2019.02.088

[41] J. Whelan, S. Craven, and B. Glennon, “In situ Raman spectroscopy for simultaneous

monitoring of multiple process parameters in mammalian cell culture bioreactors,”

Biotechnol. Prog., vol. 28, no. 5, pp. 1355–1362, 2012, doi: 10.1002/btpr.1590

[42] N. R. Abu-Absi et al., “Real time monitoring of multiple parameters in mammalian

cell culture bioreactors using an in-line Raman spectroscopy probe,” Biotechnol.

Bioeng., vol. 108, no. 5, pp. 1215–1221, May 2011, doi: 10.1002/bit.23023

[43] L. Saint et al., “In-line and real-time prediction of recombinant antibody titer by in

situ Raman spectroscopy,” Anal. Chim. Acta, vol. 892, pp. 148–152, 2015, doi: 10.1

016/j.aca.2015.08.050

[44] M. Li, B. Ebel, F. Chauchard, E. Guédon, and A. Marc, “Parallel comparison of in

situ Raman and NIR spectroscopies to simultaneously measure multiple variables

toward real-time monitoring of CHO cell bioreactor cultures,” Biochem. Eng. J.,

vol. 137, pp. 205–213, 2018, doi: 10.1016/j.bej.2018.06.005

[45] M. Li, B. Ebel, F. Chauchard, E. Guedon, and A. Marc, “Real-time monitoring of

antibody glycosylation site occupancy by in situ raman spectroscopy during bior-

eactor CHO cell cultures,”Biotechnol. Prog., vol. 34, no. 2, 486–493, 2018, doi:

10.1002/btpr.2604

[46] S. Metze et al., “Multivariate data analysis of capacitance frequency scanning for online

monitoring of viable cell concentrations in small-scale bioreactors,” Anal. Bioanal.

Chem., vol. 412, no. 9, pp. 2089–2102, 2020, doi: 10.1007/s00216-019-02096-3

[47] E. Petiot and A. A. Kamen, “Real-time monitoring of influenza virus production

kinetics in HEK293 cell cultures,” Biotechnol. Prog., vol. 29, no. 1, pp. 275–284,

Jul. 2012, doi: 10.1002/btpr.1601

[48] J. P. Carvell and J. E. Dowd, “On-line Measurements and Control of Viable Cell

Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance,”

Cytotechnology, vol. 50, no. 1–3, pp. 35–48, Mar. 2006, doi: 10.1007/s10616-005-3

974-x

[49] K. Braasch et al., “The changing dielectric properties of CHO cells can be used to

determine early apoptotic events in a bioprocess,” Biotechnol. Bioeng., vol. 110,

no. 11, pp. 2902–2914, 2013, doi: 10.1002/bit.24976

Analytics and virus production processes

223